Difference between revisions of "EGR 103/Concept List Fall 2019"
Jump to navigation
Jump to search
Line 94: | Line 94: | ||
** Unit step <math>u(t)</math> | ** Unit step <math>u(t)</math> | ||
** See [[Singularity Functions]] for way too much information - more in lab! | ** See [[Singularity Functions]] for way too much information - more in lab! | ||
− | + | *** [[Singularity_Functions#Alternate_Names_for]], [[Singularity_Functions#Building_a_Mystery_Signal]], and [[Singularity_Functions#Accumulated_Differences]] might be particularly helpful! | |
== Labs == | == Labs == |
Revision as of 20:47, 17 September 2018
This page will be used to keep track of the commands and major concepts for each lab in EGR 103.
Contents
Lectures
Lecture 1 - Introduction
- Class web page: EGR 103L; assignments, contact info, readings, etc - see slides on Errata/Notes page
- Sakai page: Sakai 103L page; grades, surveys and tests, some assignment submissions
- Piazza page: Piazza 103L page; message board for questions
Lecture 2 - Programs and Programming
- To play with Python:
- Install it on your machine or a public machine: Download
- Use a Duke container with Spyder: Containers - note - these do not have access to your Duke files. More on how to connect that later.
- Quick tour of Python
- Editing window, variable explorer, and console
- Variable explorer is your friend
- From Dewey - programming language typically have ability to work with input, output, math, conditional execution, and repetition
- Hilton and Bracy Seven Steps
- Class work developing algorithm for program to determine if a number is prime
Lecture 3
- 7 Steps for finding prime numbers
- prime program -- includes intro to input(), if tree, for loop, print(), remainder %
Lecture 4
- Function definitions
- Positional and key word arguments (kwargs)
- Default values
- Returns tuples -- can be received by a single item or a tuple of the right size
- Aquarium
Lecture 5
- print() and format specifications: link
- Main components are width, precision, and type; sometimes initial +
- e and f can print integers as floats; d cannot print floats
- relational and logical operators - how they work on item, string, list, tuple
- if trees
- while loops
- for loops
- NOTE: in the case of
for y in x
- If the entries of x are changed, or really if x is changed in a way that its location in memory remained unchanged, y will iterate over the changed entries. If x is changed so that a copy first has to be made (for example, it is set equal to a slice of itself), then y will iterate over the original entries. Note the differences between:
x = [1, 2, 3, 4, 5]
for y in x:
print(x, y)
x[4] = [0]
print(x, y)
and:
x = [1, 2, 3, 4, 5]
for y in x:
print(x, y)
x = x[:-1]
print(x, y)
- counting characters program
# letter_typing.py from class:
def check_letters(phrase):
vowels = "aeiou"
numbers = "0123456789"
consonants = "bcdfghjklmnpqrstvwxyz"
# vowels, numbers, consonants, and other in that order
count = [0, 0, 0, 0]
for letter in phrase:
if letter.lower() in vowels:
count[0] += 1
elif letter.lower() in numbers: # .lower not really needed here
count[1] += 1
elif letter.lower() in consonants:
count[2] += 1
else:
count[3] += 1
return count
out = check_letters("Let's go Duke University 2018!")
print(out)
- Question in class: does Python have ++ or -- operators; it does not. You need x += 1 or x -= 1
Lecture 7
- Distinction between == and i
- Iterable types and how they work (list, tuple, string
- Things that do not change memory address of a list (and therefore change what a loop iterates over):
- +, .append(), .extend(), .insert(), .remove(), .pop(), .sort(), .reverse(), .clear()
- Things that do change memory address of a list:
- Total replacement, replacement by self-slice, making a copy
- Singularity functions
- Unit step \(u(t)\)
- See Singularity Functions for way too much information - more in lab!
- Singularity_Functions#Alternate_Names_for, Singularity_Functions#Building_a_Mystery_Signal, and Singularity_Functions#Accumulated_Differences might be particularly helpful!
Labs
- Lab 1
- Unix commands: pwd, cd, ls, mkdir, wget, tar, cp, latex, dvipdf, evince, xeyes
- Other concepts: MobaXterm, XQuartz, ssh
- Windows permissions were covered, but were only needed during this one lab.
- Mounting CIFS drives was covered, but will not be needed for lab 1.
- Three parts of lab:
- Once only ever: creating EGR 103 folder, setting Windows permissions
- Once per lab: creating lab1 folder, wget-ting files, tar expansion, duplicate lab skeleton
- Doing work: changing to lab1 folder; using emacs, latex, dvipsd, and evince correctly
- Work on lab every day - at least logging in, changing directories, using (emacs, latex, dvipdf, evince)
- Work a little at a time to help with debugging