Difference between revisions of "ECE 280/Concept List/F23"
Jump to navigation
Jump to search
(→Lecture 1 - 8/28) |
(→Lecture 1 - 8/28) |
||
Line 19: | Line 19: | ||
*** Examples: Certain unbounded signals such as $$x(t)=e^t$$ | *** Examples: Certain unbounded signals such as $$x(t)=e^t$$ | ||
* Useful math shortcut | * Useful math shortcut | ||
− | ** For a trapezoidal pulse<center>$$x(t)=\begin{cases}mt+b, &0<t\leq\Delta t\\0,&\mathrm{otherwise}\end{cases}$$</center>where<center>$$x(0)=b=H_1,~x(\Delta t)=b+m\,\Delta t=H_2$$</center> the energy is:<center>$$E=\frac{(b+m\,\Delta t)^3-b^3}{ | + | ** For a trapezoidal pulse<center>$$x(t)=\begin{cases}mt+b, &0<t\leq\Delta t\\0,&\mathrm{otherwise}\end{cases}$$</center>where<center>$$x(0)=b=H_1,~x(\Delta t)=b+m\,\Delta t=H_2$$</center> the energy is:<center>$$E=\frac{(b+m\,\Delta t)^3-b^3}{3m}=\frac{H_1^2+H_1H_2+H_2^2}{3}\Delta t$$</center> |
** For a rectangular pulse where $$H_1=H_2=A$$, this yields:<center>$$E=A^2\,\Delta t$$</center> | ** For a rectangular pulse where $$H_1=H_2=A$$, this yields:<center>$$E=A^2\,\Delta t$$</center> | ||
** For a triangle pulse where $$H_1=0$$ and $$H_2=A$$, this yields:<center>$$E=\frac{1}{3}A^2\,\Delta t$$</center> | ** For a triangle pulse where $$H_1=0$$ and $$H_2=A$$, this yields:<center>$$E=\frac{1}{3}A^2\,\Delta t$$</center> |
Revision as of 21:08, 28 August 2023
Lecture 1 - 8/28
- Class logistics and various resources on Canvas
- Definition of signals and systems from OW
- Systems will often be represented with block diagrams. System operations for linear, time-invariant (more on that later) systems may be characterized in the frequency domain using transfer functions.
- Signal classifications
- Dimensionality ($$x(t)$$, $$g(x, y)$$, etc)
- Continuous versus discrete
- Analog versus digital and/or quantized
- Periodic
- Generally $$x(t)=x(t+kT)$$ for all integers k (i.e. $$x(t)=x(t+kT), k\in \mathbb{Z}$$). The period $$T$$ (sometimes called the fundamental period $$T_0$$) is the smallest value for which this relation is true
- A periodic signal can be defined as an infinite sum of shifted versions of one period of the signal: $$x(t)=\sum_{n=-\infty}^{\infty}g(t\pm nT)$$ where $$g(t)$$ is only possibly nonzero within one particular period of the signal and 0 outside of that period.
- Energy, power, or neither
- Energy signals have a finite amount of energy: $$E_{\infty}=\int_{-\infty}^{\infty}|x(\tau)|^2\,d\tau<\infty$$
- Examples: Bounded finite duration signals; exponential decay
- Power signals have an infinite amount of energy but a finite average power over all time: $$P_{\infty}=\lim_{T\rightarrow\infty}\frac{1}{T}\int_{-T/2}^{T/2}|x(\tau)|^2\,d\tau=\lim_{T\rightarrow\infty}\frac{1}{2T}\int_{-T}^{T}|x(\tau)|^2\,d\tau<\infty$$ and $$E_{\infty}=\infty$$
- Examples: Bounded infinite duration signals, including periodic signals
- For periodic signals, only need one period (that is, remove the limit and use whatever period definition you want): $$P_{\infty}=\frac{1}{T}\int_{T}|x(\tau)|^2\,d\tau$$
- If both the energy and the overall average power are infinite, the signal is neither an energy signal nor a power signal.
- Examples: Certain unbounded signals such as $$x(t)=e^t$$
- Energy signals have a finite amount of energy: $$E_{\infty}=\int_{-\infty}^{\infty}|x(\tau)|^2\,d\tau<\infty$$
- Useful math shortcut
- For a trapezoidal pulse
$$x(t)=\begin{cases}mt+b, &0<t\leq\Delta t\\0,&\mathrm{otherwise}\end{cases}$$ where$$x(0)=b=H_1,~x(\Delta t)=b+m\,\Delta t=H_2$$ the energy is:$$E=\frac{(b+m\,\Delta t)^3-b^3}{3m}=\frac{H_1^2+H_1H_2+H_2^2}{3}\Delta t$$ - For a rectangular pulse where $$H_1=H_2=A$$, this yields:
$$E=A^2\,\Delta t$$ - For a triangle pulse where $$H_1=0$$ and $$H_2=A$$, this yields:
$$E=\frac{1}{3}A^2\,\Delta t$$
- For a trapezoidal pulse