Difference between revisions of "Sandbox"

From PrattWiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<html></html>
+
{{LaTeX Shortcuts}}
 
+
$$\newcommand{\blah}{\alpha\beta}$$
 
+
$$\newcommand{\blaha}{\alpha\beta}$$
<center><math>
+
$$\newcommand{\blahb}{\alpha\beta}$$
 +
$$\newcommand{\blahc}{\alpha\beta}$$
 +
$$\newcommand{\blahd}{\alpha\beta}$$
 +
There is $$\frac{g \beta \Delta T H^3}{\alpha \nu}$$ and then there is
 +
\[ \frac{g \beta \Delta T H^3}{\alpha \nu} \]
 +
$$
 
\begin{align}
 
\begin{align}
H&=\frac{j\omega+8}{(j\omega)^2+4*j\omega+13}\\
+
\frac{g \beta \Delta T H^3}{\alpha \nu}
H&=\frac{s+8}{(s+2)^2+(3)^2}=\frac{A(s+2)+B(3)}{(s+2)^2+(3)^2}
 
 
\end{align}
 
\end{align}
</math></center>
+
$$
From the <math>s</math> in the numerator, you can see that <math>A</math> is 1.  That means the numerator so far is <math>1(s+2)</math>  Therefore, there is already a constant 2 up top.  To get the total of 8, then <math>B</math> needs to be 2.  That is:
+
\[
<center><math>
 
 
\begin{align}
 
\begin{align}
H&=\frac{s+8}{(s+2)^2+(3)^2}=\frac{A(s+2)+B(3)}{(s+2)^2+(3)^2}=\frac{1(s+2)+2(3)}{(s+2)^2+(3)^2}
+
\frac{g \beta \Delta T H^3}{\alpha \nu}
 
\end{align}
 
\end{align}
</math></center>
+
\]
meaning
+
 
<center><math>
+
$$\blah$$
h(t):=e^{-2t}\left(1*\cos(3t)+2*\sin(3t)\right)~u(t)
+
 
</math></center>
 
  
It is now possible to do inline math such as $$c=\sqrt{a^2+b^2}$$ with double dollar signs around the math.
+
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

Latest revision as of 16:12, 11 February 2024

$$\newcommand{E}[2]{#1_{\mathrm{#2}}}$$ $$\newcommand{\blah}{\alpha\beta}$$ $$\newcommand{\blaha}{\alpha\beta}$$ $$\newcommand{\blahb}{\alpha\beta}$$ $$\newcommand{\blahc}{\alpha\beta}$$ $$\newcommand{\blahd}{\alpha\beta}$$ There is $$\frac{g \beta \Delta T H^3}{\alpha \nu}$$ and then there is \[ \frac{g \beta \Delta T H^3}{\alpha \nu} \] $$ \begin{align} \frac{g \beta \Delta T H^3}{\alpha \nu} \end{align} $$ \[ \begin{align} \frac{g \beta \Delta T H^3}{\alpha \nu} \end{align} \]

$$\blah$$


<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">